Cancer detection via Deep Learning

Context and problematic

The biostats R&D department of a world-renowned pharmaceutical company notes the inefficiency of existing cancer classification methods. The business also needs to be able to interpret the results obtained.

Goals

Prove the added value of Deep Learning in the classification of medical images even on small samples (>2000 images). Provide an interpretable model: the business must be able to understand the choice of the model. Classify these images according to 4 cancer categories: Lung, Breast, Prostate and Colon.

Our intervention

1 Data Scientist and 1 Data Engineer in SCRUM mode

  • Creation and cleaning of the dataset
  • Data preparation (normalization, on-the-fly data augmentation, etc…)
  • Modeling using a Convolutional Neural Network (CNN) and more specifically a ResNet model with transfer learning and progressive resizing
  • Model interoperability (confusion matrix, accuracy, precision, recall, heatmap, etc…)

Results

  • Evidence of key clinical features for cancer detection
  • PoC presented and validated by management and pathologists
  • 87% Accuracy and 85% F-measure on the test set.
  • Technical environment

    Python, Jupyter Lab, Pytorch, FastAI, Plotly
    Azure
    Api Rest
    Networkx
    Dash
    Scrum

    Together with our customers, we build solutions that change and facilitate their daily lives.

    Aide à la création de médicaments

    Plateforme d’analyse de besoins clients

    Conception et industrialisation du SI analytics

    Prédiction de retards

    Analyse de visage pour recommandation produits

    Application d’optimisation de la Supply Chain

    Scoring et analyse
    de la peau

    Analyse de Forums

    Personnalisation de contenu

    Analyse des activités de support IT

    Détection de tendances sur les réseaux sociaux

    Détection
    de beaconing

    Outil de classification de documents

    Détection de cancer via Deep Learning

    Conception de plateforme de veille stratégique

    Rendements
    des champs agricoles

    Conception du Data Hub et implémentation

    Analyse et prévention des problèmes Skype

    Assistant d’aide à la recherche

    Classification de pages Web